Project 3

Step 1. Define your confusion matrix plot command

def plot_confusion_matrix(cm, classes,
                          normalize=False,
                          title='Confusion matrix',
                          cmap=plt.cm.Blues):
  """
  This function prints and plots the confusion matrix.
  Normalization can be applied by setting `normalize=True`.
  """
  import itertools
  if normalize:
    cm = cm.astype('float') / cm.sum(axis=1)[:, np.newaxis]
    print("Normalized confusion matrix")
  else:
    print('Confusion matrix, without normalization')

  print(cm)

  plt.imshow(cm, interpolation='nearest', cmap=cmap)
  plt.title(title)
  plt.colorbar()
  tick_marks = np.arange(len(classes))
  plt.xticks(tick_marks, classes, rotation=45)
  plt.yticks(tick_marks, classes)

  fmt = '.2f' if normalize else 'd'
  thresh = cm.max() / 2.
  for i, j in itertools.product(range(cm.shape[0]), range(cm.shape[1])):
    plt.text(j, i, format(cm[i, j], fmt),
             horizontalalignment="center",
             color="white" if cm[i, j] > thresh else "black")

  plt.ylabel('True label')
  plt.xlabel('Predicted label')
  plt.tight_layout()

Step 2. Create objects that describe the true and predicted target values

y_true = assign the true target values to this object
y_pred = assign the predicted target values to this object

Step 3. Plot your confusion matrix

cnf_matrix = confusion_matrix(y_true, y_pred,labels=[add labels here])
np.set_printoptions(precision=2)

plt.figure()
plot_confusion_matrix(cnf_matrix, classes=[add labels here],
title='title your plot')
plt.show()